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M A T H E M A T I C A L  S I M U L A T I O N  OF H E A T - A N D - M A S S  T R A N S F E R  IN G A S  H Y D R A T E  

D E P O S I T S  IN A H I G H - F R E Q U E N C Y  E L E C T R O M A G N E T I C  F I E L D  

N. M. Nasyrov,  I. G. Nizaeva, and F. L. Sayakhov UDC 532.546:536.421:537.868 

The laboratory and field experiments of [1, 2] showed the possibility of using a high-frequency 
electromagnetic (EM) field for deep and intense heating of a productive bed by heat sources distributed over 
the volume. The heat sources occur during interaction of a high-frequency EM radiation with the medium and 
are caused by conversion of part of energy of the propagating EM waves to heat. When a hydrate-containing 
rock is heated to the temperature of thermal decomposition of the gas hydrate, the latter can dissociate to 
the gas and water. Owing to the heat sources distributed over the volume, the phase transition can also occur 
in the absence of a temperature gradient. In this case, vast zones of phase transition can occur in which the 
gas hydrate decomposition temperature is attained and the EM field energy is expended on its dissociation. 

In [3-5], the Stefan problem was used as a mathematical model for the mathematical description 
of processes that occur in a heated medium and are accompanied by phase transitions (melting and 
decomposition). However, the assumption that phase transitions proceed on a geometrical surface (a front of 
zero thickness) is applicable only in the case where the width of the phase-transition zone is much smaller 
than the length of the EM waves radiated into the bed [3]. In addition, the width of the phase-transition 
zone should be much smaller than the characteristic dimension of the problem, for example, the characteristic 
length of the zone in which the EM radiation is absorbed by the medium. These conditions are satisfied for 
small times of heating. It has been shown [5] that, as the productive bed is heated by the EM field, the 
width of the phase-transition zone increases rapidly and, at some value of the width, the use of the Stefan 
mathematical model gives a distorted picture of real processes. 

The expression used in [3-5] for the density of heat sources distributed near the EM-wave radiator 
gives a value that  is more than 2 times larger than the real value calculated from the exact solution expressed 
in terms of Hankel functions. 

In this connection, it is necessary to use a phase-transition zone of finite width in the mathematical 
model and obtain new expressions for the distribution of heat sources. 

1. S y s t e m  of  E q u a t i o n s  Desc r ib ing  t he  T h e r m o d y n a m i c s  of  Gas H y d r a t e  D e c o m p o s i t i o n  
u n d e r  t h e  A c t i o n  of  a H i g h - F r e q u e n c y  E M  Field.  We study the following problem. A hydrate-saturated 
rock is under a bed pressure at a temperature lower than the decomposition temperature of the gas hydrate 
at the given pressure. The pore space is initially filled with the gas and the gas hydrate. 

At the borehole bottom, a sufficiently powerful source of high-frequency EM waves is located opposite 
to the productive bed. As the EM waves propagate, their energy is converted to heat. Over a fairly large 
volume of the borehole bottom, the temperature increases, and, near the radiator, it reaches the gas hydrate 
decomposition temperature that corresponds to the bed pressure. A moving boundary (or an extended region) 
of the phase transition appears. 

Maksimov and Tsypkin [6] noted that the gas hydrate decomposition regime in the bed depends on 
the permeability and, at low permeability of the productive bed, volume zones in which the hydrate and 
its decomposition products are present cannot exist simultaneously. Therefore, first of all, it is of interest to 
consider primarily hydrate-saturated rocks with high permeability. 
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Because of the high permeability of the bed and the adopted simplifying assumptions that water 
filtration is absent and the gas viscosity is small, the pressure gradient is small. Therefore, the phase-transition 
temperature of the gas hydrate changes insignificantly. It is reasonable to assume that the phase-transition 
temperature practically does not change during the mining of the bed and extends over the entire volume zone 
of the phase transition, i.e., the energy of the high-frequency EM field in the transition region is expended 
only on the hydrate decomposition. 

We assume that  the frame of the porous bed and the gas hydrate are incompressible, water is an 
incompressible liquid, the gas satisfies the Clapeyron equation, and the capillary effects are small. The entire 
process of action of the high-frequency EM field s on the hydrate-containing bed can be divided into three 
stages in the mathematical formulation: in the first stage, the bed is heated from the initial state to the 
beginning of the phase transition at the borehole bot tom and the occurrence of a moving decomposition 
boundary; in the second stage, the Stefan problem is solved, i.e., the assumption of the progress of the phase 
transition on a geometrical surface - -  the front of zero thickness; in the second stage, the non-Stefan problem 
is solved, i.e., the decomposition of the gas hydrate in the zone of finite thickness located between the region 
of completely decomposed gas hydrate and the region where the phase transition has not yet begun. 

It is assumed that,  in the first stage of heating, filtration of the gas and water is absent and processes 
that occur under the action of the EM field on the gas hydrate bed are described only by the heat-propagation 
equation 

cp Ot -- r Or rA-~r + q' cp=  ( 1 -  m)copo + m(alplCpl + VCap3), 

P T o l  
/] -]- 0" 1 - :  1, Pl = plo P0 T z'  A = (1 - m)Ao + rn (0"1A1 + PA3) 

subject to the boundary conditions 

OT(ro, t) 
T(r,O) = Tp, T(c~,t)  = Tp, Or - 0, 0"1(r, 0) = 0"1o, v(r,O) = vo, 

where c and p axe the specific heat and specific density, T is the temperature, t is time, r is the current 
coordinate, ~ is the heat conductivity, q is the density of heat sources, m is the porosity, 0"1 is the gas saturation, 
%1 is the specific heat at constant pressure, v is the hydrate saturation, pl0 is the gas density under normal 
conditions (P0 = 0.1 MPa and To = 273 K), P is the pressure, z is the coefficient of supercompressibility of 
the gas, Tp is the initial temperature of the bed and the temperature of the rock around the bed, r0 is the 
radius of the borehole, at0 is the initial gas saturation, and v0 is the initial hydrate saturation; the subscripts 
0, 1, and 3 refer to the frame of the rock, the gas, and the gas hydrate, respectively. 

At the beginning of the gas hydrate decomposition, a moving boundary of the phase transition occurs 
R(t), which divides the productive bed into regions I It0 < r < R(t)] and II [R(/) < r < co]. It is assumed 
that, in the first stage of heating, the pressure at the borehole bottom decreases, and removal of the gas-water 
mixture formed begins. As in [6], it is assumed that, in the given stage of heating v0 < 1, the processes that 
occur in region I are described by the system 

OTI 1 0 ( or i~ OTI 
cIPl Ot r Or k r AI "-~'r ] -- pl Cpl V1 ~ + qI; 

0(pl0.1) 1 O 
m 0 - - - - 7 - -  + = o; 

P T o l  
p l = p l 0 p o  T z' p 2 = c o n s t ,  a l + a 2 = l ;  

KoKI(al)  OP 
Yl=  

I~1 Or ; 

Clp I = (1 - m) coPo + m (alp1%1 + a2p2c2); 

)~I = (1 - -  rr t)  ~0 -1- rrt (o '1~1 Jr 0 .2~2);  

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 
(1.6) 
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and the processes in region II are described by the system 

OTII 1 0 ( OTII• OTII 
cIIPlI O---t- - r Or _rAII Ot ] -- plcpl V1 ~ + qII; (1.7) 

0(p10.1) 1 0 
rn 0-----~ + -r~rr (pl Vlr) = O; (1.8) 

P T o l  
= , o'1 + v = 1; ( 1 . 9 )  Pl pa0 P0 T z 

14o OP 
V, = ; (1.10) 

/~1 Or  

cIIPlI ---- (1 -- m) coPo + rn (0"1PlOp1 + vc3P3); (1.11) 

~ I I =  (1 - m) Ao + m(al)q + vA3). (1.12) 

Here V is the filtration velocity, 0.2 is the water saturation, K0 is the absolute permeabil i ty of the bed, m is 
the gas viscosity, and K1 (0.1) is the relative permeability of the bed; the subscript 2 refers to water. 

The boundary conditions for the second stage of heating can be adopted in the form [7] 

P(r,O) = Pp, P(ro, t) = Pg, P(oe, t) = lap, OTI(ro,t) 
Or - O, 

Tii(oo, t ) =  Tp, TI (R, t )= TII(R, t)= T,, T , = a l o g P ,  +b, (1.13) 

OTI(R,t ) OTII(R,f ) dR dR (Op3 ) 
- -  V + O ' 1 +  - -  0 " 1 -  , hi Or + )q l  O r  - -  mp3uL "~, 1/1+ V I -  = m - - ~  Pl* 

where Pp and Pg are the initial and bo t tom pressure of the bed, T. is the phase-transition tempera ture  of the 
gas hydrate, a and b are empirical constant,  L is the heat release due to the phase-transit ion of the hydrate, 
and 0 is the mass concentrat ion of the gas in the hydrate; the subscripts plus and minus refer to the quantities 
on the right and left at the dissociation front, and the asterisk refers to the quantit ies at the front that  do 
not undergo a discontinuity. 

After the width of the phase-transit ion zone has reached a value that  cannot be ignored compared with 
the EM wavelength and the characteristic dimension of the problem, the third stage of heating begins. In 
this case, the problem is solved for the following three regions: region I [to < r < RI(t)] ,  in which the phase 
transition has already been completed,  TI > 2"., region II [Rl(t) < r < R2(t)], in which the phase transition 
occurs and the gas, water, and hydrate  coexist simultaneously, TII = T., and region III [Rl(t) < r < R2(t)], 
in which the phase transition has not yet begun, rIII < T,. For the third stage of heating in region II, it is 
assumed that  the hydrate saturat ion v changes continuously from the value v0 at the point r = R2(t) to zero 
at the point r = Rl(t). 

The processes that  occur in region I are described by system (1.1)-(1.6), and, in region III, they are 
described by system (1.7)-(1.12) with replacement of the subscript II by the subscript III. In the phase- 
transition zone (in region II), the processes are described by the system 

02"II 1 0 ( OTII~ OTII Ov 
- -  r Or  \ r A I I  "~-r ] -- pmcplVl -~r + mp3L -5[ + qII, cIIPlI Ot 

Tt~ 

P T o l  
pl = plO po T z '  

cIiPi I = (1 -- m)coPo + m (alCplPl + 0.2c2p2 

AII= (1 - m) A0 + m (alAi + a2A2 + vA3), T. 

The boundary conditions for the third stage are given only by the 

O(plal) 1 0 Ov 
Ot + r ~r (pl Vlr) = -rnp30 -~,  

p 2 = c o n s t ,  al + a2 + v = l, V 1 -  KoKI(al)  OP 
IJ1 Or ' 

+ uc3p3), 

= a l o g P ,  + b. 

(1.14) 

following expressions on the stationary 
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boundaries r = ro and r = oo: 

0T(r0, t) 
P(ro , t )  = Pg, P(oc,  t) = Pp, Or - 0, TIII(OO, t) = Tp. 

On the moving boundaries, there are no boundary conditions because of the continuity of the hydrate 
saturation u. 

The absence of boundary conditions for r = R1 and r = R2 can be explained as follows. By analogy 
with formula (1.13), for r = R1, we write 

OTI(R1, t) OTII(R1, t) dR1 
AI Or +AII Or -- rnpauL d--T" 

Since the temperature  gradient in region II tends to zero because of the progress of the phase transition, and 
the hydrate saturation on the boundary r = R1 also tends to zero, the second term on the left in the given 
equation and the right side tend to zero. As a result, the remaining term of the equation also tends to zero: 

OT,( R1, t) 
-)~I Or ~ O. 

For r = R2, the boundary condition is 

OTII( R2 , t) OTIII( R2 , t) 
--All Or + AIII Or = mp3L(y+ - v_) dR--!2 dt" 

For the reason indicated above, the first term tends to zero. The right side of the equation also tends to zero, 
because the difference (v+ - v_) on the boundary between the regions tends to zero. As a result, we obtain 

0TIII(R2, t) 
~III Or § 0. 

Expressions that describe the distribution of heat sources in all three stages for each region are written 

in Sec. 3. 
2. E s t i m a t e  o f  t h e  W i d t h  of  t h e  P h a s e - T r a n s i t i o n  Zone .  Using the energy equation (1.14), 

which describes processes in the phase-transition zone, we estimate its possible width. This, in particular, will 
allow us to determine up to which heating time of the bed it is possible to use the Stefan problem as the 
mathematical model. 

Because of the continuous variation in the hydrate saturation v in the phase-transition zone, this 
region is an electrodynamically inhomogeneous medium, whose electrophysical characteristics depend on the 
coordinates. 

We assume that  the total heat from the distributed heat sources goes only for the gas hydrate 
decomposition, and, hence, a temperature  gradient is absent in this region. Because of this, the energy equation 
(1.14) takes the form 

Ov 
rnp3L .~-~ + qlI = 0. (2.1) 

The solution of Eq. (2.1) is given by 

t 

f qII dt v = vo - rnp3L " (2.2) 
0 

As the heat sources we use the known expression obtained for the radial distribution of EM waves for 
the far radiation zone: 

aN0 exp ( - 2 a ( r  - r0)). (2.3) q = - ~ -  

Here a and No are the damping factor and power of the EM waves and h is the thickness of the productive 
layer. 
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TABLE 

R1, m R2, m dl,  m 

0.0625 
1 
2 
3 

0.913 
9.12 
14.3 
18.2 

0.8508 
8.12 
12.3 
15.2 

t, day RI, m R2, m dl, m t, day 

13.7 4 ::.140 1 :140  1100 
231 5 1458 
490 10 34.75 24.75 3897 
779 

We find the t ime of complete decomposition of the gas hydrate at the observed point r = R1, by 
substituting (2.3) into (2.2): 

vo~r R l  hmpaL  
tl = alIN0 exp (2alI (Rx - r0)). 

To determine the time of onset of the gas hydrate decomposition t2 at the same point, we ignore the 
conductive and convective terms in the energy equation (1.14) and also the heat losses into the rocks around 
the bed. Equation (1.14) takes the form 

07'ii 
clIPI�92 ~-~ = qlI. 

Integrating this equation and using formula (2.3), we obtain 

alINot2 
T, = Tp + 7rRlhCllPIl exp ( - 2 a l i ( R  1 - ro)), 

and, hence, 

t2 = (7", - Tp) r R ,  hcllPn 
a i iN  ~ exp (2aII(R1 -- r0)). (2.4) 

Thus, the duration of the gas hydrate decomposition is given by the approximate relation 

r R l h  
tx + t2 -- aII----N0 exp (2ai I (a l  - ro))(vornp3L + (2", - Tp) CllPll), (2.5) 

from which it is evident that  the duration of the process, and, hence, the width of the phase-transition zone 
(we denote it by dy) depend on many factors: the electrical and thermal parameters of the medium, the 
difference between the phase-transition temperature and the initial temperature of the bed, the porosity and 
thickness of the bed, the frequency, radius, and power of the radiator of EM waves, and the distance from the 
observed point to the EM-wave radiator. 

If the time t = tl + t2 for the given point r = Ra is determined from formula (2.5) and the point r = 1{2 
for the same time t is determined from formula (2.4), one obtains the transcendental equation 

alIN0t 
R2 = ( T.  - Tp ) rrhclIPlI exp ( - 2 a l I ( R  2 - r 0 ) ) .  

Specifying various values for R1, one can calculate the width of the phase-transition zone d/ (see 
Table 1). The parameter values used in the calculations are given in Sec. 4. 

As noted above, the Stefan problem can be used as the mathematical model provided that  the following 
two conditions are satisfied: 

(1) the width of the phase-transition zone should be much smaller than the characteristic length of the 
problem; 

(2) the width of the phase-transition zone should be much smaller than the length of the EM waves 
,kp radiated into the productive bed. 

From the first condition, written as d I << 1/c~, we obtain d i << 30 m. The second condition requires 
d I << Ap. If we use the frequency f = 13.56 MHz of one commercial generator, then dy << 10 m. The second 
condition imposes a more stringent requirement on the width of the phase-transition zone. 
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Analysis of Table 1 leads to the following conclusion. The Stefan problem can be used as the 
mathematical model only in the initial stage of heating, in which heating covers the borehole bottom of 
the bed. On further heating, the width of the phase-transition zone cannot be ignored. 

The mathematical model described above allows one to study processes with a volume phase- 
transition zone that occur under the action of high-frequency EM fields on hydrate-saturated rocks with 
high permeability. This leads to the allowance for the gas fraction evolved in the decomposition of the gas 
hydrate in the transition region, whose width (see Table 1) can be significant. According to [7], with high 
permeability of the bed, the mass of the gas produced from the phase-transition zone can be several orders of 
magnitude larger than the mass of the gas produced from the region of complete dissociation of the hydrate. 

3. Ca lcu la t ion  of  the  T e m p e r a t u r e - F i e l d  D i s t r i b u t i o n  wi th  A l lowance  for the  Phase -  
Trans i t ion  Zone.  The temperature distribution in the productive bed is a basis for the calculation of the 
main technological characteristics of the thermal method of exploitation of gas-hydrate deposits (for example, 
the volume of the region heated to the phase-transition temperature, the amount of the gas evolved, the 
required power of the EM-wave radiator, etc.). In turn, the temperature distribution under volume heating of 
the medium is mainly determined by the distribution of heat sources, and the heat conductivity and convection 
only facilitate a more uniform temperature distribution in the medium. 

For the mathematical  simulation of the processes that occur in the decomposition of gas hydrates due to 
the action of a high-frequency EM field, the use of the phase-transition zone of nonzero width primarily requires 
obtaining new formulas for the power of the heat sources distributed in the productive bed. As noted above, 
the phase-transition zone is electrodynamically inhomogeneous medium, whose electrophysical characteristics 
depend on the coordinates. The mathematical problem of the field propagation in inhomogeneous media is 
very complicated and has no general solution. However, for the problem of a plane wave in a medium whose 
parameters depend on a single coordinate, there is a simple mathematical apparatus that provides, in some 
cases, an exact or approximate explicit solution [8, 9]. 

Electrodynamically, a gas hydrate bed is a nonmagnetic dielectric with losses. It is characterized by 
the complex dielectric permeability e, which depends on the spatial coordinate. Let the EM field for the radial 
coordinate system depend on only one coordinate r. For a monochromatic EM wave, the wave equation is of 
the form [8] 

d2E 1 dE 
dr 2 + - + k2e(r) Z = 0, (3.1) r-~r 

where E is the complex amplitude of the electric-field-strength component Er (the subscript is omitted below), 
k = w ex/'~ ~ is the coefficient of EM-wave propagation in vacuum, e0 and #0 are the electrical and magnetic 
constants, and w is the radial frequency. 

The solutions of the wave equation (3.1) for region I (r0 ~< r < RI), in which the gas hydrate has 
completely decomposed and the medium is homogeneous, for region II (R1 < r < R2), in which the hydrate 
is still at the decomposition stage, and for region III (R2 < r < oo), in which the hydrate has not yet begun 
to decompose and the medium is homogeneous, can be obtained by the Wentzel-Kramers-BriUouin (WKB) 
method [8, 9]. For this, we represent the field strength E as the product of the slowly and rapidly changing 
factors (the amplitude and phase of the field) and substitute it into Eq. (3.1). Then, ignoring the second 
derivative of the slowly varying factor, we find the solution as the sum of the incident and reflected waves. 

Using additional conditions, it is possible to obtain two simple equations that relate the unknown 
coefficients of the incident and reflected waves [8]. 

The electric-strength field is related to the EM-wave radiation conditions by the following formulas for 
the three regions, respectively: 

EI = A -~r{ e x p ( - j k v ~ r )  + B e x p ( j k v ~ r ) } ;  (3.2) 

f 

Eli : ~{ ~-~exp (-- / v~d.) + C2(r)~.~ exp (jkRl/x/~ dr)}; (3-3) 
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1 
E I I !=  AD - ~  exp ( - j k  cx/k'~r ). (3.4) 

Here A is a general coefficient that depends on the conditions of EM-wave excitation in the medium, j = v/'L~ 
is the imaginary unity, B is the coefficient of reflected waves in region I, Cl(r) and C2(r) are the coefficients of 
incident and reflected waves, respectively, in region II, and D is the coefficient of incident waves in region III. 

Note that the exponents in formulas (3.2)-(3.4) are asymptotic approximations of Hankel functions in 
the far zone of the EM-wave radiation, in which the condition 

kx/'~r >> 1 (3.5) 

is satisfied. 
The coefficients Cl(r), C2(r), and B can be refined iteratively [8]. As a first approximation for the 

coefficients C2(r) and B we have 

R 2  . r 

r r 0 

R . 
Y glI B - _ / 
J 
r 0  r 0  

where ~ is the derivative with respect to the coordinate r, and it is also taken into account that C2(R2) = 0, 
i.e., there is no wave that  propagates from the right. 

The unknown coefficients Cl(r)  and D are found from the boundary conditions at the points r = R1 
and r = R2: 

C , ~ ( evCi'~ R 2 - R ~ 

R1 

The distribution of heat sources q in the medium can be determined from expression [4] 

weoe I tan ~ EE* = we0e' tan 6[E[2 
q -  2 2 " 

(3.6) 

Here the superscript asterisk denotes the complex-conjugate quantity, e' is the real part of the complex 
dielectric constant e = e' - j e  II, and tan 6 = e"/e '  is the dielectric loss tangent. 

The exponential factors in (3.2)-(3.4) are representable in terms of the damping factor a and the phase 
factor/3 [9]: 

exp ( - j k v ~ r )  = exp ( - j ( /3  - j c0r ) ,  
,- r , ( 3 . 7 )  

exp ( -  Sk I VZi'<t,') -- exp ( -  S - / <,,i <t,). 
R1 R1 R1 

Taking into account formulas (3.6) and (3.7), we obtain the distribution of heat sources in the three regions 
in the form 

l a J e 0 e ]  
tan 3I Im12 { exp (-2c~ir) + IBI 2 exp (2air) + 2Re(B*exp(-2j/3ir))); (3.8) 

ql - -  2 r  

r we~ <,II J, ' )  
qII : 2r [~I I~  

R1 

-t',C2'2exp(2]Cllldr) 3c2Re(C1C~exp(-2j]/3IIdr))}; (3.9) 
R1 R1 
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wzOZ}l I tan 8Ii I IAI2IDI2 exp ( -2~i i i r ) ,  (3.10) 
qllI = 2r 

where Re is the imaginary part of the complex quantity. 
Using the expression for the Poynting vector and the formula for the magnetic-field strength H in the 

form [9] 

for the coefficient A we write 

H = Az- '  -~r (exp ( - j k v ~ r )  - B exp ( jkv~r ) ) ,  

}1 
IAI 2 = ~ Re (exp ( - 2 a i r 0 )  - IBI 2 exp (2air0) + 2 j im (B exp (2jflir0))) , 

where Zl is the wave resistance of the medium in region I and Im is the imaginary part of the complex quantity. 
In the third stage of heating in regions I-III, the heat sources q are given by relations (3.8)-(3.10); 

the dielectric characteristics of the saturated porous medium for the third stage are found from the following 
relations: 

I 
e i = (1 - m ) e  0 + rn(al~ll + a2e~), tan(51 = (1 - m) tanS0 + rn(er 1 tan(51 + a2 tan 82), 

~II (1 ' ' = --m)g0+m(o' l r  1 +0"2r + v r  ' tan ~II = (1 --m) tan ~o+m(o" 1 tan 61+0"2 tan 62+v tan 63), 

r = (1 -- m)r + m(~lr + vr tan(Sili = (1 -- m) tan 80 + m(al tan61 + v tan  83). 

In all the stages of heating, a uniform distribution of heat sources across the bed thickness and radial 
symmetry are assumed. In the first stage of heating, EM waves propagate in the medium without reflections, 
and the expression of heat sources is of the form [4] 

q -  rroh Re(jkv~n~2)(kv~ro)H[2)*(kV~ro)) ' (3.11) 

where H I 0 ( . . . )  and g !2) ( . . . )  (i = 1 and 2) are Hankel functions. 
In the second stage, EM waves are partially reflected from the phase-transition boundary R(t) (front 

of zero thickness), and the expressions of heat sources in regions I and II are of the form [4] 

alZ----AI IAI2 {IH~2)(kv~rll2 + IBI21H~i)(kv~rlt 2} qI = w#O 

IAI2 {Re "B* 2 ( ~  (kCH~2,(kV~r)H~l)*(k~Ir) -kvl~H[2)(k~r)HI1)*(kV~Ir))) 

+ Re(~-~ (kCH~l'(kvl-~r)H~ 2)* (k~r) - k~/r~H[1)(kvf~r)H[ 2)* (k~r)))}, 

IAI21CI 2 
qi ,  - - -  , ~ n ~ I , l n ~ 2 ) ( k v ' ~ , ' ) l  2,  

w/to 

B = z ,  z12 = - - ,  (3.12) H~2)(kx/-d~R)HI1)(kv~R)- z,2H~')(kv~R)H[2)(kvrd-~n)' Zll 

C = H~2)(k~gIR) + BH~O(kv~R) 
H~2) ( kvf-~-~R) 

J (H~2)(kv~ro)H[2)*(k~/~-ro)+ B*H~2)(kv~ro)H[1)*(kCro) [AI2= rrohN--'-~--~ Re(z-~1 

+ + 

902 



{BI2.10 4 

3.0- 

1.5- 

0 
6 

q, W/m 3 

.14.70 

�9 14.55 

14.40 
1"2 1'5 d f ,  m 

Fig. 1 

q, W/m 3 

12- 

6- 

o ~ 4 ~.~ 

Fig. 2 

q-lO 2, W/m 3 

14- 

11 

10 
0 

26  r . m  

Fig. 3 

v q.lO 2, W/m 3 i 

1.2 
11.0 

0.6 
9.5 �84 

8.0 
10 

V 

1.2 

'0.6 

0 
18 22 2'6 R2 r ,  m 

Fig. 4 

q, W/m 3 

0.90- 

0.45- 

I 2 

I i ! 

2 0  r ,  m R R2 10 

Fig. 5 

1/ q, W/m 3 

"1.2 

14.70- 

'0.6 
14.25- 

13.80 
I'0 R l , m  

IBI2.104 

-4.11 

"3.93 

3.75 

Fig. 6 

903 



When reflection of EM waves is absent, i.e., the reflection coefficient is B = 0, formula (3.12) becomes 
(3.11). If, instead of the Hankel function in formula (3.11), we write their asymptotic expressions for the far 
zone, in which condition (3.5) is satisfied, we obtain the known expression for distributed heat sources (2.3) 
[5]; (2.3) can be derived from formula (3.8), if we assume that B = 0 and tan 6 << 1 and use the known 
expressions for the damping factors of EM waves a and the phase/3 [9]: a = k x / ~ t a n  6/2 and/3 = k v ~ .  

4. R e s u l t s  o f  t h e  N u m e r i c a l  S tud i e s .  We give the results of calculations [using formulas (3.8)- 
(3.10)] of heat sources distributed in a productive bed including an inhomogeneous phase-transition zone of 
finite thickness for the following parameters: m = 0.4, f = 13.56 MHz, No = 10 kW, h = 10 m, r0 = 0.0625 m, 
~ = 3.98, tanr0  = 0.02, ~] = 1, tan6a = 0.0001, ~ = 4.17, tan63 = 0.1, ~ = 87, tan~2 = 0.002, v0 = 1, 
pa = 800 kg /m 3, L = 5.1. 105 J /kg,  Tp = 10~ Pp = 20 MPa, Pq = 7 MPa, copo = 1193 k J / (m  3. K), 
c3p3 = 2304 k J / ( m  3 �9 K), and p2 = 1000 kg]m 3. To simplify the calculations, we assumed a2 = 0. 

The results obtained show the wave-like dependence of the reflection coefficient of EM waves, calculated 
from the power [B[ 2 and density of heat sources q at the observed point, on the phase-transition zone width 
(region II). With increase in the width of region II, the vibration amplitude decreases, and, in the limit, [B[ 2 
tends to zero and q tends to its value for an infinite (without EM-wave reflection) medium. 

The dependences [B[2(dl) and q(df) (curves 1 and 2) at the point of EM-wave radiation in region II 
are shown in Fig. 1 with a linear increase in the hydrate saturation u from zero to unity. 

A typical distribution of heat sources for the radial propagation of EM waves is shown in Fig. 2. In 
region I standing waves are not formed, and the density of heat sources is maximum at the borehole bottom. 
In region II, some formation of standing waves is observed. 

The heat-source distributions in regions II and III for various values of the width of region II are 
shown in Figs. 3 and 4 (curves) with a linear increase in hydrate saturation (curves 2). In Fig. 4, the width 
of region II is larger than the EM-wavelength, and the formation of standing waves is evident. Obviously, for 
the decomposition of the hydrate  mass that is not present in the porous medium, the formation of standing 
waves in region II will be more distinct. 

In Figs. 3 and 4, region II is located fax from the source of EM waves, and the radial character of 
wave propagation appears only slightly. Therefore, an increase in the density of heat sources with increase in 
hydrate saturation is observed. If region II is located near the source of EM waves, then, as shown in Fig. 5, 
despite the increase in hydrate  saturation, the density of heat sources decreases exponentially in almost the 
entire region because of the radial propagation of EM waves. 

Figure 6 shows the dependences of the density of heat sources at the borehole bot tom (curve 1) and the 
reflection coefficient IBI 2 (curve 2) versus the position of the boundary R1. In this case, R2 varies in parallel 
with a change in R1, but  the difference between them remains constant. Evidently, the first dependence 
is wave-like (as the distance between region II and the EM-wave radiation source increases, the vibration 
amplitude decreases), and the second dependence decreases monotonically. 

The aforesaid leads to the following conclusions. The investigation of the processes that occur under 
the action of an EM field on a productive bed leads to a qualitatively different class of physical problems, 
whose solution requires the introduction of a phase-transition zone of finite thickness into the mathematical 
model used. The thermodynamic  state of the bed (temperature,  pressure, and hydrate saturation) depends 
greatly on the width of the phase-transition zone, the location of its near and far boundaries relative to the 
radiation source, and the variation of these factors. This leads to nonlinearity of the energy equation that 
describes the temperature  distribution in the productive bed. 
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